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ABSTRACT 

Trust plays a critical role in communications, strength of 

relationships, and information processing at the individual 

and group levels. Cognitive social simulations show promise 

in providing an experimental platform for the examination of 

social phenomena such as trust formation. This work is a 

novel attempt at trust representation in a cognitive social 

simulation using reinforcement learning algorithms.  Initial 

algorithm development was completed within a standalone 

social network simulation and tested using a public 

commodity game.  Evaluation of the contributions and 

dividends within the public commodity game shows that many 

of the expected behaviors of human trust formation are 

present.  Initial results show that reinforcement learning 

can accurately capture the core essentials of human trust 

formation.  Following standalone testing, the trust 

algorithm was imported into the Cultural Geography model for 

large-scale test and evaluation.   
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I. INTRODUCTION TO THE PROBLEM OF MODELING TRUST 

A. PROBLEM STATEMENT 

Social simulation, and in particular human behavior 

modeling, has become an extremely important element of 

modern warfare.  This thesis is an attempt to solve one 

small piece of the problem of modeling human behavior by 

answering the following question: 

How can trust formation be modeled within human, 
social, cultural and behavior (HSCB) based 
simulations? 

In answering this broad question, it was necessary to 

answer several related questions.  These questions are: 

What is an appropriate working definition of 
trust as it applies to HSCB models and in 
particular agent communications within these 
models? 

What trust based effects do we expect to see from 
a properly implemented trust model within HSCB 
applications? 

Recent advancements in human behavior modeling, 

cognitive agent simulations and artificial intelligence have 

made the goal of predictive HSCB modeling attainable in the 

foreseeable future.  In the last ten years in particular, it 

has become possible to begin tackling the individual 

problems that are the stepping stones in achieving this 

modeling and simulation goal.  This research is directed 

specifically at the problem of modeling trust formation in a 

society and how it effects communication within that 

society.  If a society can be successfully modeled, 
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including accurate human behavior models, it may become 

possible to understand how insurgencies form and operate.  

Being able to predict the actions of an insurgency or even 

being able to prevent it from ever forming will be an 

immeasurably powerful tool in modern security and stability 

operations. 

The problem of modeling a society and more importantly 

of modeling an insurgency within that society is one of 

understanding political power.  Political power stems 

directly from the will of the populous and their opinions of 

those wielding the power (regardless of whether the power is 

implemented through fear or through proper civil discourse).  

The ebb and flow of political power is directly related to 

the communications that take place within that society, or 

more accurately how information is disseminated through the 

social network of that society.  Within social networks is a 

flow of information that begins with either an individual or 

a group and is transmitted to others with whom they have 

ties. The recipients of this information will make a trust 

evaluation in order to determine whether the information is 

actionable.  Information that is trusted can be used by the 

recipient in several ways.  Primarily, the recipients will 

adjust their beliefs based on this new piece of trusted 

data.  In some cases, the information that is received is 

something that the recipient feels his closest friends 

should also know about, and he can then resend this 

information further into the social network.   

It is easy to see how simple person-to-person 

communications are the building blocks of information flow 

in a society.  Furthermore, modeling the flow of information 
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is the most fundamental step in modeling political power in 

a society.  The particular problem addressed within this 

work is how best to model a system by which agents in a 

social network can evaluate information that they receive 

and how they can determine who in their local group of 

agents are trusted enough to receive this new piece of 

information. 

In the following section, there is a further 

exploration of the problem of trust modeling, including a 

discussion of why it is important to develop these kinds of 

models. 

B. EXPLORING THE PROBLEM 

When viewed at the national level, the objectives of 

warfare have never significantly changed for as long as 

there have been wars in society.  Carl von Clausewitz said 

in his unpublished treatise On War, “The political object is 

the goal, war is the means of reaching it, and the means can 

never be considered in isolation form their purposes” (1832, 

p. 87).  In other words, the motivation to go to war is 

political in nature and therefore combat is just another 

means of achieving political ends.  In conventional warfare, 

the forces involved are typically evenly matched and the 

conflict is resolved by means of kinetic combat until the 

forces decide to cease this action usually by means of a 

treaty or surrender.  In the 21st century, the United States 

has developed a nearly unmatched military power in 

conventional kinetic ability.  This power encourages the 

enemies of the United States, especially those that are 

nongovernment actors, to resort to insurgencies and 
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nonconventional methods rather than meeting the United 

States in open combat (Department of the Army, 2006).   

The new flavor of warfare is one in which a 

technologically and numerically superior force is engaged 

with an inferior one that is willing to resort to insurgent 

and terrorist tactics.  The United States’ policies when 

involved in foreign internal defense are designed to protect 

the population of the host nation, as well as aid in dealing 

with insurgencies and other opposing forces that would 

prevent the development of an independent and free nation 

(Joint Chiefs of Staff, 2004).  The ultimate nature of 

warfare itself has not changed in that in these operations 

the U.S. still seek to win and use political power.  In 

conventional warfare, it is the choice between capitulation 

and combat that drives a nation to submit to the will of 

their opponent.  In recent wars, such as in Iraq and 

Afghanistan, it has been found that kinetic military force 

alone is not enough to gain and wield political power.  If 

the U.S. is to allow these nations to build themselves up in 

the ways that they see fit in order become a free and 

independent, it simply cannot be done by sheer force alone.   

Following major military operations such as in Iraq and 

Afghanistan, there is a likely to be a much longer period of 

stabilization and rebuilding.  It is during this time that 

to find success a legitimate government that is widely 

supported by the populace and capable of dealing with 

counterinsurgents on its own must be established.  It is 

also during these beginning times that the counterinsurgency 

has the best opportunity to undermine this goal.   
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When dealing with kinetic operations, the efforts in 

modeling and simulation dealt mostly with the objective 

elements of the problem.  It is easy to model how a shell 

from a tank is going to travel and what kind of damage it 

could do to an enemy tank.  It is also well within the 

capability of modeling and simulation (M&S) to model 

conventional warfare through simulation and analysis using 

fairly straightforward laws of military conflict.  The 

reason these types of problem paradigms are well understood 

and easily modeled is that there is little human cognition 

involved.  Modeling insurgencies and public opinion has very 

little to do with physics and concrete laws and rather has 

everything to do with modeling the human mind.  Modeling an 

insurgency requires an understanding of the changing 

motivations of the insurgents and of the population in which 

they are hiding and operating. 

Understanding the complexities of human behavior is 

still in its infancy.  Furthermore, looking at a socially 

connected system of human beings and allowing them to freely 

interact makes modeling the behavior of that system even 

more difficult.  Take as an example the U.S.-led coalition 

force conducting stability operations in Iraq. If the 

military decides to improve the roads in the city, it would 

be of great advantage to the populace.  However, if an 

insurgency group does nothing more than spread rumors that 

the coalition force’s intentions are not to benefit the 

population but rather to ease their own military vehicle’s 

travel through the city, the popular sentiment may turn 

against coalition forces.  If the insurgents then destroy 

some of the roads and possibly even kill contractors 

building the roads it may end up fueling hostility toward 
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the coalition.  In this situation, military commanders will 

be faced with troubling dilemmas.  They will have to decide 

if it is best to conduct operations against the insurgency, 

such as searches and arrests of those involved, or will it 

be more beneficial to rebuild the roads, or will it be 

better to move onto another public works project.  They will 

have to know if it is better to try and sway public opinion 

by interacting with the populace or if it is better to go 

through city officials.  In order for the U.S. to make 

justifiable decisions in the situations described above, it 

is necessary that leaders be given tools that can aid in 

those decisions. 

The actions taken by the U.S. during stability 

operations will have broad and far reaching consequences.  

This work is attempting to further development models that 

can track how particular actions might sway public opinion.  

The type of HSCB model that this work is applicable is one 

in which the agents within the model are connected in some 

kind of social network within which information can flow, 

e.g., the Cultural Geography (CG) model developed by TRAC-

Monterey, which will be discussed in detail in a later 

section.  When agents in the social network witness an 

event, they will form some kind of opinion and may choose to 

share this information with its closest neighbors.  The key 

to modeling this information flow is in understanding the 

processing mechanisms of the individual agents.  The 

particular goal of this work is to model the trust decision 

that agents make when they receive information and also the 

decision of who to trust enough to resend vital information 

on to.  In the following sections there are more complete 
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discussions of the particular methodologies employed in 

modeling these trust decisions.     

C. METHODOLOGY 

This research uses Reinforcement Learning (RL) 

algorithms for modeling trust.  The trust algorithm was 

first implemented in a standalone simulation intended to be 

a vastly simplified version of the Cultural Geography (CG) 

model.  Following initial testing it was then transitioned 

to the CG model for full scale test and evaluation.  In 

later sections there will be in depth introductions to both 

RL and CG.   

The first step in the development of a successful trust 

algorithm was to build an extremely scaled down test bed 

that mimics some of the social networking behavior of the CG 

model.  This was done by modeling a simple social network of 

agents and applying modern social network analysis to see 

how the network evolves and how the agents communicate.  

Once an operable test bed social network simulation was 

developed, the trust algorithm was implemented and the 

agents were made to play trust games.  In particular, the 

economics based game called Public Commodity (PC) was used 

in our analysis, which will also be discussed in depth in 

later sections. 

The results of testing the trust algorithm with the PC 

game led to several revisions until a satisfactory outcome 

was reached.  At this point the trust algorithm was 

transplanted into the CG model.  A similar game of trust was 

developed within the CG model to test this early 

implementation of the algorithm.  
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II. RELEVANT BACKGROUND INFORMATION 

This section provide background information that is 

needed to develop a RL based trust algorithm as well as 

relevant background information needed to test the algorithm 

with the CG model using the PC game. 

A. FOUNDATIONS OF TRUST 

The first rule of simulation is to know what is being 

simulated.  If you want to draw an 800-pound gorilla, you 

must first know what an 800-pound gorilla looks like.   

Trust is a concept that is easy to talk about casually 

but extraordinarily difficult to define specifically.  This 

is especially true when it must be described in precise 

terms that can lead to a useful computer algorithm.  The 

concept of trust is important to a very broad spectrum of 

academic disciplines including psychology, sociology, 

philosophy, computer science, political science, and much 

more.  Certainly, there are no one-size-fits-all definitions 

for trust.  Therefore, in order to establish a useful 

working definition of trust one must first be careful to 

define exactly how it will be used and in what context it 

can be graded.  For this work the following definition of 

trust will be used: 

Trust = The perception of one agent (trustor) 
that other agents (trustees) will adhere to an 
unspoken social contract and will faithfully 
conform to preconceived actions based on their 
past actions, perceived characteristics or 
position in the social hierarchy. 
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The motivations for the definition of trust will be 

outlined in the following sections.  The ultimate goal for 

this project is the implementation of a trust based filter 

within the CG model, which is an agent based simulation 

currently being developed by TRAC-Monterey.  Therefore, the 

first subjects that must be discussed are the basics of 

agent modeling and communication and how trust affects 

communications. 

1. Agent Communications and Trust 

Agent based modeling can most simply be described by 

being made up of a group of agents that each receive 

percepts and take actions.  These agents base its actions on 

those percepts as dictated by its internal set of rules and 

processes.  The process of perception and action can be seen 

as a cyclic process between the agent and the environment, 

especially when all the other agents are viewed as part of 

the environment instead of actors within it.  This cyclic 

relationship is shown in Figure 1. 

 

 
Figure 1.   A General Agent Model 

If we treat the other agents as part of the environment 

then the communications that are received from those agents 
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can be treated in exactly the same as percepts from the 

environment.  Looking at it in this way, we see how a 

general model of agent communication should look.  Figure 2 

shows a communication that is passed on from one agent to 

another and then repeated on to another agent, i.e., a 

“telephone game.” 

 

 
Figure 2.   General Trust/Communication Model 

In the simple model above, the overall communications 

process is complicated by the existence of many similar 

agents operating simultaneously within the same environment.  

In the example of the telephone game, each agent in the line 

of communication must accurately receive and then retransmit 

the information.  As soon as one agent in this link fails, 

the information is changed.  The evolution of the message 

driven by individual mistakes can lead to hilarious results, 

which is why the telephone game is so much fun to play.  In 

contrast to the telephone game, real societies have lines of 
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communication that are not linear.  Real communications 

within social networks transmit by taking multiple routes 

and therefore it is likely that important pieces of 

information that transmit through the entire social network 

will be received and retransmitted many times over by each 

agent.  Despite this redundancy of communication, the 

particular processes that the individual takes to receive, 

process and retransmit communications are the foundation of 

information flow in the network.  In models such as CG, the 

flow of information in the social network is the prime mover 

for agent belief revision, and therefore understanding the 

communication process is of vital importance.  The following 

section contains an in depth introduction to the CG model. 

2.  The Cultural Geography Model 

The Cultural Geography model is a discrete event 

simulation developed in Simkit that comprises a small 

society of agents that are seeking basic commodities for 

living such as water, fuel and food.  As these agents 

acquire these needed items, they can experience shortages or 

long queues that can influence its beliefs and therefore can 

drive some of its actions.  In particular, shortages in 

commodities may drive an agent to discuss its views on the 

situation with its neighbors.  As a parallel to the real 

world, if there were shortages of gasoline, and high prices 

and long lines where gasoline was available, this would 

certain be a center of many conversations.  In addition to 

dislike of the situation, people are also likely to express 

dissatisfaction for the current administration and how it 

might be their fault for the current shortage.  In addition  
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to commodities, the agents can also witness events such as a 

terrorist attack that can also affect its beliefs and become 

a topic of conversation. 

The agents each have a belief structure encoded as a 

Bayesian network that defines the agent’s issue stances.  

The point of this model is to monitor issue stances, such as 

positive feelings toward coalition forces, or satisfaction 

in the government.  As the simulation progresses the flow of 

commodities, or certain events will have an impact on the 

issue stances of the population and these effects can be 

tracked and analyzed. 

Trust in this model falls primarily into the area of 

inter-agent communications.  Simplifying this a bit, we can 

say that the agents will communicate with each other, update 

its beliefs, then, based on the updated beliefs take some 

actions.  The choice of who to trust guides the agent in 

updating its beliefs, which in turn guides the actions of 

the agents and therefore will have a direct impact on the 

happiness of the agent. 

The implementation of trust in CG will have an effect 

on all aspects of the simulation.  In order to weed out non-

trust phenomena and really see the effects of trust, we will 

be allowing the agents to interact in trust based economic 

games, such as the public commodity game.   

In parallel with the development of this algorithm, the 

CG model underwent a major overhaul with the addition of a 

cognitive architecture.  The agents utilize a working memory 

that can take a sequence of percepts, limited to a specific 

number, typically 7 percepts simultaneously.  These percepts 

lead the agent to form a cognitive determination of its 
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situation based on preplanned characteristics.  These 

characteristics include things like basic human needs and 

potential opportunities.  It is from this situation 

formation that the agents can determine the most appropriate 

action to take.  

The trust algorithm being developed within this work is 

based on RL, which relies heavily on the identification of 

the particular state the agent finds itself in.  In the case 

of inter-agent communications, the state could be as simple 

as the sender of information or could be much more 

complicated.  For example, the state could be a combination 

of the disposition of the sender, the sender’s name, the 

subject, the disposition of the receiver, and more.  

Unfortunately, the more complicated the state space becomes 

in RL, the longer it takes the algorithm to converge to an 

optimum.  There will be more discussion of the determination 

of states in a later section.   

In addition to knowing what state the agent is in, an 

RL algorithm must also have a method for mapping certain 

states and actions to rewards.  The CG model contains a 

cognitive self-appraisal that can be used as a reward 

signal.  The drawback here is that this method of reward 

does not specifically address the issue of trust, only the 

agent’s overall well-being.  Rewards are easily defined for 

games where the reward structures are built directly into 

the game’s rules.  Before returning to the goal of defining 

trust, there is first an introduction to the trust based 

games that these agents will play to test the trust 

algorithm. 
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3.  The Public Commodity and Economic Games of Trust 

The Public Commodity Game (sometimes referred to as the 

Public Trust or Public Goods game) is a very common test bed 

within the Game Theory and Economics communities.  The rules 

of the game are simple, although several variants do exist.  

This section will focus on the particular variant used in 

development of this trust algorithm. 

The PC game starts with a group of players.  In each 

round, every player is given an amount of income with which 

to play, 100 units, for example.  The player will then 

decide a portion of that money, ranging from no contribution 

to full contribution, to put into a public commodity.  The 

public commodity is meant to represent some kind of public 

good that benefits from cooperation en-masse, such as civil 

services (fire, police, hospitals, etc.).   

Other variants of the public commodity game include 

versions where the play must be either all or nothing, 

giving us two broad categories of players, contributors and 

defectors.  Although total defection is not allowed in this 

model, social defection is fundamental to the development of 

a meaningful definition of trust.  Because of this, the term 

defector will not be used for a player that completely opts 

out but for one who is taking advantage of the group by 

merely minimizing his contribution.   

After each player has contributed his selected amount 

in the blind, the total pot is then multiplied and then 

redistributed equally amongst all players regardless of its 

initial contribution.  The following shows the steps played 

in each round of the PC game: 
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1. Each player receives 1.00 units of commodity 

(utility) each round. 

2. Players have the chance to communicate once per 

round with close neighbors, including both sending 

and receiving information.  

3. The information transmitted between players does 

not directly pertain to the PC game, rather 

communications were about beliefs that indirectly 

contributed to a players decision on how much to 

contribute. 

4. The public commodity is collected once per round, 

multiplied by 3.0 and redistributed. 

5. Players are not allowed to know the contributions 

of the other players, nor did they explicitly know 

how many players are involved in the game. 

In this version, the payout to each player is private 

(i.e., no communications regarding payouts).  The agent’s 

contribution strategies, therefore, will be based on trust 

of the other agents in general, not based on trust of 

declared contributions.   

Looking at the PC game from a theoretic standpoint, we 

see that if the pot is multiplied by any factor greater than 

1.0, it is clear that the most mutually beneficial strategy 

would be for all players to commit all of its income to the 

pot.  This situation is an unstable state because any 

defector from this mutually beneficial strategy will 

individually benefit from opting out of a contribution.  In 

the case of a large number of players, each player will 

receive nearly the same public commodity payout, except the 
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defector in that without having had to pay into the pot he 

is now richer than the others by that contribution amount.  

The defector now has no monetary motivation to reinstate his 

contribution.  As the game progresses, more and more players 

begin to opt out and eventually the pot lowers in value.  As 

the pot lowers in value, many additional players will begin 

to opt out as they perceive the game to not be worth as much 

as they feel it should be based on past experience.   

As a game of pure strategy, the only stable equilibrium 

will be when all players opt out.  Look at the case where in 

a given round, there were no contributions from any player.  

In subsequent rounds, any single player that choses to begin 

contributing will find his contribution returned 

substantially reduced as it is divided up amongst all the 

other players.  This negative reinforcement will urge the 

player to once again defect from the game, returning the 

stable equilibrium of zero contributions. 

When PC games are used on real players in the 

laboratory, there are consistently higher payoff levels than 

what would be predicted within game theory (Hoffman, McCabe 

& Smith, 1998).  Based on the results seen in experimental 

economics, it is expected that the average dividend will 

approach a small but non zero value.  

Take, for example, a large social network of players, 

such that there is a sufficiently large population of 

players so that direct communication between all players is 

impossible.  In the language of network theory, this social 

network will have a relatively low ratio of average 

closeness-centrality to the total number of nodes in the 

network.  As an example, take a city of 250,000 people — any 
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one person is likely to have direct communication with 

between 130 and 250 people, but typically cited is 150 as a 

good representative value (Dunbar, 1996).  There will also 

be a high degree of overlap; in other words, given any two 

persons in close contact with each other, their combined 

group of close neighbors will not be closer to 150 than 300.  

In other words, many of the 150 friends of each of these 

individuals will be the same as the other.  From these 

relationships comes the age-old axiom of “Six Degrees of 

Separation,” where even in a large population nearly all 

individuals are connected by six or fewer indirect 

relationships.  When this kind of group is examined within 

the PC scenario, it is expected to initially find a trend 

toward little or no contribution, but then it is expected to 

see close groups of individuals changing their contributions 

nearly at the same time.  What one should expect from an 

accurate model of agents playing a PC game is that trust 

groups make decisions nearly at the same time and as a whole 

change their contribution to the game.     

4. Getting Back to the Issue of Trust 

Trust is more than a prediction of an agent’s actions 

based on their past actions.  In the PC game, an agent will 

develop a trust of the other agents based mostly on the past 

performance of the public commodity in general, rather than 

the specific actions of any one player.  In other trust 

games, such as the prisoner’s dilemma (PD), the trust 

decision is likely not entirely based on reputation.  In the 

PD game, two players make a decision, usually pertaining to 

the confession of a crime, in which betrayal of their 

partner could stand to bring them reward.  Additionally, if 
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both players opt out of betraying the others then they will 

receive some smaller reward.  For example, if neither 

confess, they both get one month in jail, if one confesses 

and the other does not, the confessor may be set free and 

the other spends a year in prison. And, if they both 

confess, they both spend a year in prison.  In particular, 

what is being asked is if the opposing player(s) will adhere 

to some unspoken rules or a code of conduct.  These rules 

depend highly on the relationship of the players as well as 

the value of the objects involved.  As an example, look at 

the story “Button, Button,” by Richard Matheson, in which a 

strange man gives an unsuspecting person a box with a big 

red button.  If the button is pressed, the owner of the box 

receives a million dollar prize, but somewhere a stranger 

that they could not possibly ever know will fall dead.  This 

is the kind of situation wherein the social contract would 

dictate that the contestant should not press the button.  

This concept of a social contract is central to the notion 

of trust (Mistzal, 1996).  

When human beings in modern society view each other and 

make trustworthiness evaluations, there is clearly more than 

reputation involved in the decision process.  There will 

always be a constant baseline trust that exists between 

individuals.  This baseline will include such things as the 

potential trustees position in society, such as doctors and 

police officers, who garner automatic trust amongst most 

people.  The baseline will also include unconscious biases 

such as racial biases that make us inherently trust people 

who appear to be similar to ourselves (Stanley et al., 

2011).   
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In summary, what we have is a concept of trust that can 

be used to help predict the actions of other agents (such as 

their possible contribution to a public pot) and help to 

guide the actions of the trustor.  This trust will be based 

on three key elements, reputation, characteristics and 

position of the trustee.  These characteristics lead to the 

definition of trust being used in this research. 

B.  MACHINE LEARNING 

As the goal for this project is to model trust in a 

small group of cognitive social agents in a computer 

simulation, it is necessary to dive into the subject of 

machine learning (ML) and how it played a central role in 

the development of trust algorithms. 

1. Reinforcement Learning 

The particular brand of machine learning utilized in 

this project is reinforcement learning (RL).  RL is an 

appealing approach in that the very idea of reputation is 

built right into it.  Additionally, RL has been shown to be 

a fantastic tool for solving problems and captures many of 

the reinforcing phenomena that occur naturally in the human 

brain.   

The basic idea of RL is that agents will seek to select 

actions within their environment based on their experience 

and learn from those selections. Based on the permissiveness 

of the environment, agents are eligible to receive percepts 

from the environment that inform them on the state of the 

environment at a given point in time. The basic elements of 

reinforcement learning are: a policy that maps states to 
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actions; a reward function that maps a state of the 

environment to a reward; a value function that maps states 

to long term value given experience; and an optional model 

of the environment. The policy provides a set of actions 

that are available in a given state of the environment; the 

agents leverage its prior knowledge of the environment, 

informed by the value function, to determine which action 

will provide the greatest reward, as defined by the modeler.  

Agents must strike a balance between exploration, behavior 

to explore the reward outcomes of state action pairs that 

have not been tried, and exploitation, behavior that takes 

advantage of prior knowledge to maximize short term rewards, 

in order to avoid converging to local minima (Sutton & 

Barto, 1998).  The ability to control this balance makes 

reinforcement learning an attractive approach for 

representing human behavior. The reinforcement learning 

technique used in this work is Q-learning in conjunction 

with a soft-max function (the Boltzmann distribution). 

2.  Q-Learning Using Boltzmann Selection 

The basic reinforcement equation of Q-Learning is as 

follows in Figure 3: 

 

Figure 3.   Q-Learning Reinforcement Equation. 

Q-learning falls into a class of model free 

reinforcement learning methods that have the property that 

the learned action-value function, Q, approximates the 

optimal action-value function, Q*, requiring only that all 
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state action pairs be updated as visited (Sutton Barto 

1998).  For each state action pair, (s,a), the Q-learning 

function updates the current estimate based on new 

information received from recent actions, r, and discounted 

long term reward. In general, an action is selected from a 

given state, the reward outcome is observed and recorded, 

and the value function updated.  The value associated with 

each action is used during each visit to a particular state 

to determine which action should be chosen using the 

Boltzmann distribution, shown in Figure 4 below.  

 

Figure 4.   Boltzmann (Soft-Max) Selection Probability 

The Boltzmann distribution uses the temperature term, 

τ, to control the level of exploration and exploitation. A 

high temperature translates into exploratory behavior, a low 

temperature results in greedy behavior.  Although the 

algorithms presented here utilize constant temperatures, it 

has been shown that temperature scheduling is far superior 

to constant temperature methods (Ozcan, 2011). 

A good example of reinforcement learning is an agent 

that plays the game, “N-Armed Bandit.”  In this game, the 

agent is faced with a slot machine with n arms, where n is 

greater than 1 and can be as large as necessary to serve the 

purpose of the experiment: in this case, choosing n to be 2.  

The agent is made aware that the payout probabilities are 

fixed and necessarily unequal, although the RL algorithms do 

not require this information to function properly.  In other 
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words, each arm pays out at a different fixed rate.  It is 

easy to see how most humans would approach this problem, and 

this is typically how the RL algorithms handles it as well.  

Most would pull each lever a fixed number of times, say ten 

pulls each, and record the results.  If lever A hits 2 times 

out of ten, and lever B hit out 5 times out of ten, most 

human players would favor lever B in the next round of play.  

The amount the player would favor depends on his particular 

attitude and is something that can be controlled within RL.   

So, we say that our player will play 15 times on lever 

B and only 5 times on A, but then something unusual happens 

-lever B only hits 2 times and lever A now hits 4 out of the 

5 times.  Most human players would put this one back to step 

1 and play equal amounts the next few rounds to settle once 

and for all which lever is better.  For RL, this added 

reward from lever A adds to its likelihood of being chosen 

in a very precise, although probabilistic, way as discussed 

previously.  The advantage here is that the agent utilizing 

proper RL algorithms will find the optimum, where a purely 

greedy algorithm may not.  In fact, in many situations it is 

easy for a simple algorithm to find a local optimum that is 

not the global optimum.  RL algorithms, when properly set 

up, are very good at not getting foiled into local optimums 

and most often find the true global optimum.  More 

importantly, it is possible to configure these algorithms so 

that its search for the global optimum is very similar to 

human behavior.  RL is particularly well suited for dynamic 

repeated environments wherein measuring past actions against 

unexplored opportunities yields the best overall results 

(Dutt, 2011). 
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As previously discussed, the basis of trust likely has 

evolutionary motivations and is driven at its core by simple 

concepts such as reciprocation and reputation.  RL provides 

a fantastic platform for designing a trust algorithm, in 

that its fundamental processes are perfectly suited to model 

these concepts and therefore it is the best choice for the 

basis of a trust algorithm.  RL does, however, highly rely 

on its inputs in order to function properly.  In particular, 

it is up to the designer in RL to define what reward signal 

should accompany given states.  It is also up to the 

designer to define how percepts will combine to form a 

hashable state and possible courses of action that the 

algorithm can use to determine the action-value function.  

An overview of this is shown in Figure 5 below. 

 

 
Figure 5.   Overview of the Q-Learning Cycle 

There is a further discussion of reward signals and 

state formation in Chapter III.  For now, it suffices to say 
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that, even though RL can be demonstrated to be a useful core 

algorithm for trust modeling, there is difficulty in 

implementing this model in that for each situation we choose 

to implement it, we must determine complete mappings for 

reward signaling and state formation.  Fortunately, the CG 

model has a built in cognitive self-appraisal that can be 

fed into RL as a reward signal. 

C.  SOCIAL NETWORK ANALYSIS 

In order to see the effects of trust on a society of 

agents, it is necessary to look at the society in a network 

format.  Social networks are interconnected groups of 

individuals represented by nodes on a network graph and 

connected by edges that represent social relationships 

primarily based on communication.  Within the social 

network, there are a few attributes that can be used to 

evaluate the overall character of the network.  These are 

defined below: 

Degree Centrality is a measure of the direct 

connections of a node.  The average degree centrality tells 

us how connected the individuals are in this social network.  

This factor depends on the particular social network that is 

being looked at.  For example, in a small village of 100 

people or fewer, chances are that each individual will have 

connections to nearly all the others as this is a very small 

tight-knit community.  In a large city, a person will likely 

have between 130 and 200 connections, with 7 to 12 close 

personal ties.  In the last case, the degree centrality that 

will be modeled into the network depends on what strength of 

social ties wished to be modeled.  It may be that only close  
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personal ties are included in the model, whereas simple 

acquaintances are not.  Degree centrality formulae are given 

in Figure 6. 

 

 
 

 
 

 

 

Figure 6.   Degree Centrality Formulae. 

Betweenness Centrality is a measure of a node’s 

importance to information flow within a social network.  In 

other words, given a node, sometimes called a broker, which 

is the only connection between two other nodes that are each 

hubs with high degree centrality, then any information that 

flows between the two sub networks formed by the two hubs 

must pass through the broker node.  The broker node in this 

case has a high betweenness centrality.  Another way to 

think of betweenness centrality is as a measure of the 

fraction of shortest paths that pass through the node in 

question.  Betweenness centrality formulae are given in 

Figure 7. 
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Figure 7.   Betweenness-Centrality Formulae 

Closeness Centrality is a measure of how close a node 

is in a social network to all the other nodes by both direct 

and indirect connections.  The average closeness centrality 

of the network tells us how connected the network is where 

the maximum possible case is a social network in which all 

nodes are connected to all others.  Closeness centrality 

formulae are given in Figure 8 below. 
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Figure 8.   Closeness-Centrality Formulae. 

Clique is a maximal group within a network in which all 

the nodes in the group are interconnected.  The formation of 

cliques is an expected part of most social networks 

(Hallinan & Smith, 1989).   

Every social network is different and therefore we will 

not find that there are any single values that we would 

expect for any of these characteristics that apply to all 

social networks.   
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III. THE TRUST ALGORITHM IN DETAIL 

As discussed in previous chapters, we are working with 

a biologically inspired model of trust in which the effects 

of reputation and reciprocity are central.  This trust 

algorithm was developed first as a simplified model based 

loosely on Cultural Geography.  The simplified version is a 

social network simulation that was developed in the Python 

programming language using the NetworkX network analysis 

tool pack from Los Alamos National Laboratory.  The next 

sections are a detailed description of how the algorithm was 

developed as well as the results of test and evaluation.   

A.  REINFORCEMENT LEARNING AS A TOOL TO DRIVE DYNAMIC 
SOCIAL NETWORKS 

One of the archetypal game scenarios for which RL is 

perfectly suited is the “N-Armed Bandit” problem, as 

discussed in the last chapter.  In this game, the agent is 

faced with a series of actions that are state independent, 

which means that the payouts do not depend on the history of 

actions of the agent, or the state of the environment.  That 

is to say, the environment in which the agent operates is 

unchanging.  In the case of the n-armed slot machine, this 

means that the probability of hitting a jackpot never 

changes, whether it is the first or the millionth pull, 

whether the jackpot has just hit or has never hit.  

Therefore, the agent simply must choose which arm to pull.  

Thinking about how a human being would determine which arm 

is best, the agent can more accurately be said to select a 

strategy for a series of pulls.  This strategy might be 

something like, first pull each arm 10 times and see which 
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one pays out better.  Then, based on the payouts, start 

favoring one arm over the other.  After a long period of 

play, the agent will become fairly confident which arm is 

better and will play that arm nearly exclusively.  In 

simplified form, this just means the agent will choose what 

percentage of a series of pulls that go to each arm.  The 

percentage of pulls can be called the emphasis that the 

agent places on each of the arms.    

If we think of slot machine arms as connections in a 

social network, and the payoff as the benefit of spending 

time with agents on the other side of those connections, we 

start to see how this n-armed bandit problem can be 

generalized and used in social networks.  Essentially, the 

agent has a choice of his nearest neighbors in the social 

network that he can choose to place some emphasis.  It may 

be instructive to think of this emphasis as a fraction of 

the day (or week, or whatever time period is relevant) that 

he would like to spend with this other person.  Wanting to 

spend time with someone is not enough to garner a reward; 

the other person must also want to spend time with you.  The 

game now becomes a multiplayer integrated n-armed bandit 

game in which each of the agents will decide which of its k 

nearest neighbors it chooses to spend its time with, and 

specifically how much time to spend with each.  If two 

neighbors both choose to spend time with each other, then 

they will both receive a positive reward from this 

interaction.  When one neighbor wishes to spend time and the 

other does not reciprocate, then little or no reward is 

given.  It is left for future work to determine if and how 

to utilize the idea of negative rewards in this situation.   
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This model has been implemented and turned into a turn-

based simulation in which the agents and their relationships 

are represented by a single network graph with the agents as 

the nodes and their social relationships as the non-

directional edges, weighted by the mutual value of the 

relationship.  The value of the relationship is dynamic and 

calculated once each round.  It will be a combination of a 

base static value and a dynamic value that is controlled by 

the agents.  The static is based entirely on the concept of 

homophily ( ) (McPherson Smith-Lovin, & Cook 2001), in 

other words, that demographically similar persons associate 

more frequently. The homophily calculation is a simple 

Euclidean distance from the agents demographic 

characteristics.  In this simulation the agents have 

multiple demographic dimensions, including age, sex, race 

and others which have fixed constant values.  When two 

agents share a common demographic value, a demographic 

character score of 1.0 is inserted into the Euclidean 

distance formula and 0.0 if they are different.  The 

demographic character scores are squared, summed and the 

square root is taken.  This value is then divided by a 

normalization factor to make the maximum homophily value 

1.0.  For example, looking at the case of 3 demographic 

dimensions, we have two agents that have the following 

demographic characters, Agent1 = [Caucasian, 24–34 years, 

Male] and Agent2 = [Caucasian, 64+ years, Male].  For these 

agents the homophily calculation would be as in Figure 9 

below (where EH is the homophily value and δn are the 

demographic character scores for demographic characteristic 

n): 
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Figure 9.   Sample Homophily Calculation 

The value calculated above will be the baseline 

emphasis between the two agents for the entire simulation 

run.  It is left for future work to determine a viable means 

of altering the baseline homophily.   

The dynamic portion of the emphasis is completely under 

the control of the agents involved ( ).  In the case of k 

completely connected agents, each agent has k-1 choices of 

neighbors with whom to spend time with.  Based on the 

emphasis the agents places on each relationship, it will 

receive some unknown reward from time spent with the other 

agents.  For every simulation round, each agent will choose 

to increase, decrease or maintain its contribution to its 

relationships with the other agents.  This contribution can 

be viewed as a fraction of time spent with the others in 

that it is represented as a floating point number from 0.0 

to 1.0 and such that the sum of all these components (i.e., 

the sum of all edge weights leaving the node representing 

the agent) always sums to 1.0.  At the end of each turn, the 

agent is rewarded based on the strength of its 

relationships, which only hold value if the emphasis on the 
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relationship is reciprocal with the other agent.  This 

reward takes the form in Figure 10 below: 

 

Figure 10.  Basic Reward Calculation 

In the equation above, the EAB terms are the emphasis 

value that A places on the relationship with B.  

Additionally, recall that the EH term is a homophily derived 

base emphasis between agents A and B that is based on the 

Euclidean distance of their demographic characteristics. 

This equation uses the minimum of the variable contributions 

from each agent.  In this way, it can more accurately be 

said that the variable portion is the fraction of time that 

the agent would like to spend with the other agent, but if 

this sentiment is not reciprocated, no reward is earned.  In 

fact, since the total emphasis is constant in this 

simulation, placing emphasis on an agent that does not 

reciprocate comes with an opportunity cost that can be seen 

as a form of punishment. 

The result of this basic model is the development of a 

simple dynamic social network. The network tends to become 

highly centralized around 1 or 2 agents.  In particular, in 

runs consisting of 50 agents, the final network graph 

consisted of nearly every agent with a strong connection to 

a single central agent with nearly no other connections 

present (Figure 11).   
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Figure 11.  Highly Centralized Social Network 

This centralization of the social network is explained 

by the fact that the algorithm is based solely on one-on-one 

interaction and neglects any effects due to larger groups 

and also due to the fact that the homophily calculation is a 

Euclidean distance formulation.  One might expect that the 

best the network can do is to pair up into closest 

neighbors.  In other words, each agent finds the one other 

agent it shares the closest demographic characteristics to 

and places total emphasis on this one relationship.  Given 

the way that EH is calculated, this will likely never be the 

case.  This is mostly due to the fact that the RL algorithm 

is not trying to maximize utility for the entire network, 

which can easily be done by forcing this kind of pairing.  

Rather, the RL algorithm, or better yet, the RL algorithms 

are working on one direction of one edge at a time, 

independently of all others.  So, instead of optimizing the 

network it is competitively optimizing all the connections 
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simultaneously.  Optimization can also come in the form of 

an opportunity cost, which is to say that a relationship 

that is emphasized but not reciprocated is the same as 

taking a penalty, which is equivalent to what the agent 

could have received from emphasizing some other relationship 

that would have been reciprocated and thus produced its 

relationships both by emphasizing some and ignoring others.   

Due to the fact that the homophily calculation used in 

this case is a Euclidean distance formula, we can say that 

each demographic characteristic is like a linearly 

independent value that can be treated like a coordinate 

access in a Cartesian coordinate system.  In this case, the 

agent’s particular demographic characteristics can be seen 

as coordinates in a 5 dimensional space (due to the fact 

that there are 5 demographic characteristics).  Each agent 

can then be represented as a single point in this space.  As 

the network evolves and the agents optimize their network 

connections, the agents will effectively try to minimize the 

distance they must cover in the 5 dimensional demographic 

space in order to make their best relationships.  The group 

of agents, all represented by points in a 5 dimensional 

space, will work most smoothly together by forming 

relationships closest to the geometric center of all the 

points.  Whichever agent, or agents, occupies the point 

closest to this center will inevitably end up being the 

central agent, depicted as agent #6 in the simplified graph 

above.  Any deviation from this will clearly be less than 

optimal for nearly every agent involved (save the one 

exception of the central agent). 
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In order to solve the problem of excessive network 

centralization, it was necessary to consider the effects of 

cliques on the network.  There was a need to give the RL 

algorithms some benefit to forming a network that allowed 

the formation of cliques like the one shown in Figure 12.    

 

Figure 12.  An Example of a clique of three agents  
or 3-clique 

In the example above, there are three agents that form 

a tightly bound clique.  In other words, the three agents 

all place equal emphasis on all the relationships.  If the 

emphasis is equivalent to an amount of time desired to spent 

with the target agent, then in the case above, there should 

be extra time allotted simply due to the fact that it is 

likely that agent A will spend time with agents B and C 

simultaneously.  In other words, if agent A only has 1.0 

units of emphasis to dole out, the time spent mutually with 

B and C should not count twice.  However, the secondary 

reward from spending time with B and C together will not be 

the same as if the agent could spent equal time with B and C 

separately.  This simply suggests that time spent in a pair 

is ultimately more personally rewarding.  This is obviously 

not always the case in every relationship, but as an 

average, it is likely to mimic actual social interactions 

quite well.   
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The second order reward factors are based on the same 

reward function as used in the first order above.  In this 

case, the reward is reduced by dividing by a distribution 

factor and is subsequently squared in order to emphasize the 

importance of first order relationships.  For the case of 

agents A B and C above, the additional reward looks as in 

Figure 13 below: 

 

Figure 13.  Secondary Rewards in the Social Network 

Once the second order terms are added similar network 

properties to what we would expect to see in real social 

situations emerge; namely subdivisions into cliques, 

pairings and the exclusion of certain individuals from these 

cliques (Wellman, Carrington, & Hall, 1988).  Figure 14 

below shows a less centralized network than the previous 

example.  The effect is much more dramatic in larger social 

networks but significantly more difficult to visualize and 

in printed form, therefore only a small social network is 

shown.   

 

Figure 14.  An Example of a Less Centralized Social Network 



 38 

We find that the parameter D is highly influential on 

the closeness-centrality of the social network in such a way 

that D can be used to tune this factor to fit with the 

network being modeled.  The distribution factor was varied 

and showed a fairly steep “S” curve (Figure 15) that was 

centered between D = 14 to D = 24.  There are several widely 

varying sources on what a real human social network should 

look like in terms of closeness centrality that range from 

0.20 to 0.60 (Krebs, 2002; Dekker, 2008).  Therefore, for 

the purposes of the remainder of this initial 

experimentation D = 18.4 is used in order to target the 

fractional closeness centrality to around 0.30.  The exact 

nature of these values is irrelevant for this initial model 

and only serves as a baseline for further work.   

 

 

Figure 15.  Average Closeness-Centrality Versus Distribution 
Factor 

It is obvious that these features are not intended to 

actually model the internal and external processes that form 
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real human social networks; rather, it is just a starting 

block.  This dynamic social network is a simple stage that 

roughly mimics the dynamics seen in real social networks and 

which allowed the development of a trust algorithm within 

it. 

B.  ADDING COMMUNICATIONS AND TRUST TO THE SOCIAL NETWORK 

Now that there was a functioning social network on 

which to operate, it was necessary to implement a 

rudimentary belief structure for the agents.  Each of these 

agents had a finite set of beliefs, five in this case, 

represented by a single floating point number from 0.0 to 

1.0.  These beliefs combine in a simple linear combination 

(i.e., each value multiplied by a weighting factor from -1.0 

to 1.0) to provide a single issue-stance, also as a floating 

point that ranged in value from 0.0 to 1.0.  For these 

purposes, the interpretation of these numbers to actual real 

world beliefs is irrelevant; it only mattered that the 

agents had some kind of belief structure that is roughly 

heterogeneous across the population.  The social network for 

this simulation is allowed to evolve, initially for 1000 

rounds for a simulation of 15 agents.  Once the network was 

stabilized, the agents began choosing topics of 

conversation. This choice was based on a probabilistic 

Boltzmann distribution. The agents discussed this topic with 

its k nearest neighbors with the caveat that any neighbor 

above the communication-threshold, set initially to 0.90, 

will automatically receive a communication and likewise any 

neighbor below the ignore-threshold, initially set to 0.10, 

will never receive one.   
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Initially, the communications consisted of each agent 

telling its closest neighbors exactly what its value was on 

a selected belief.  At this point, the receiving agent made 

a trust evaluation of the information received in order to 

determine the best action.  The receiving agents used a 

reinforcement learning algorithm to determine whether or not 

belief revision was merited.  The state space that the RL 

algorithm operated in is a pairing of subject and sender for 

the communication.  As an example, if agent A tells agent B 

that he feels belief 5 has a value of 0.75, the receiver 

agent, B will use “Agent A discussing Belief 5” as the 

unique identifier of this state.  As will be seen in the 

next chapter, for early implementation into CG it will be 

necessary to confine the state space to just the sender of 

the information.  Each state in the state space has 2 

corresponding actions, “Trust” or “Do not Trust.”  For 

information received and trusted, the agent will update its 

beliefs according to the new information and this will 

define their future actions.  The method of belief revision 

used was to simply shift the agents own belief in the 

subject of the communication 1/10 of the way to the value 

stated by the other agent.   

In order to utilize reinforcement learning in this way, 

it is necessary to define some concept of a reward that the 

agent will receive based on its beliefs and therefore 

directly related to its trust and belief revision 

mechanisms.  Our inspiration for a reward model was the 

Public Commodity (PC) game from experimental economics.  As 

discussed in the previous chapter, within the PC game, each 

agent has an option to contribute some fraction of its 

income (1.0 per round) to a public pot of money each round.  
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Following the round, the money in the pot is multiplied by 

some amount (in this case 3.0) and then redistributed to 

each agent regardless of contribution.   

In the current model, agents are given 1.0 possible 

units to play such that an agent that contributes nothing is 

guaranteed a reward of at least 1.0 for opting out and an 

unknown reward ranging from nearly 0.0 to 3.0 for full 

contribution.  Game theory tells us that without cooperation 

the expected equilibrium for rational players would be 

exactly 0.0 contributions from all agents; in other words, 

all agents take the guaranteed 1.0 and opt-out of the public 

commodity all together.  As discussed in the previous 

chapter, we expect that in reality some people would always 

contribute at least some small amount irrespective of their 

losses.  In order to simulate this, we have developed “Faith 

in the Public Commodity” as the issue-stance and is used to 

directly control the level of their contribution to the 

public commodity.  During each simulation round, agents 

communicate with one another and attempt to bring other 

agents closer to their beliefs. 

Now that there is a concrete idea of reward in this 

model, it is possible to begin applying a simple model of 

belief revision.  The agents will communicate and the 

information will either be trusted or distrusted.  Trusted 

information will cause the recipient to alter its beliefs 

some fraction of the distance between its starting belief 

and the value of the belief being told to it.  The effect of 

this style of communication and belief revision will result 

in a local optimum of play by all players.  Effectively, all 

the beliefs will average out until all players believe the 
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same things, then no further belief revision is possible and 

the game will become static.  This is highly unrealistic for 

two major reasons: 1) Changing a belief is not free, there 

are internal psychological costs to changing beliefs 

(especially those that are deeply ingrained in the 

believer).  2) Beliefs are not always constant.  One of the 

key features of CG, for which this algorithm is intended, is 

that events such as food shortage or terrorist attacks can 

have an effect on beliefs.  

In order to model a penalty for straying beliefs away 

from the agent’s normal beliefs, the following penalty 

(Figure 16) is assessed to the reward signal received by the 

agents each round. 

 

Figure 16.  Penalty Assessed to the Reward Signal from 
Straying from the Agents Normal Beliefs. 

In the above, the Belief Variance is a simple Euclidean 

distance measure from the agents current beliefs to what it 

started with at the beginning of the simulation.  The norm 

penalty is applied to the reward signal, by reducing the net 

dividend the agent can receive from the pubic commodity as 

shown in Figure 17 below.   

 

  

 
 

Figure 17.  Application of Belief Revision Penalty 
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In the above equation, CA represents the contribution 

to the public pot from agent A and K represents the number 

of agents in the social network.  The following summarizes 

the way this PC game is carried out within this social 

network: 

1. Each agent first decides whether to raise, lower 

or maintain its social emphasis on each of the 

agents they are connected to. 

2. Each agent will then conduct communications with a 

selection of its closer friends that consist of a 

basic statement about their value of a specific 

belief.  (e.g., Agent A communicates to Agent B 

that it feels 0.72 about belief # 1). 

3. Each agent that receives a communication will then 

choose to either totally trust the received 

information or totally distrust it. 

4. Each agent that has chosen to trust a piece of 

received information will adjust that particular 

belief 1/10 of the way to the announced belief 

value in the communication. 

5. After communications and belief revision have been 

processed, each agent will take the appropriate 

linear combination of its beliefs to produce its 

single issue stance, “Faith in the Public 

Commodity,” which will be a single floating point 

number from 0.0 to 1.0. 

6. Each agent will receive 1.0 units of income and 

from that contribute to the public pot in the 
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amount equal to the value of its issue stance on 

“Faith in the Public Commodity.” 

7. After all contributions have been collected the 

money in the public pot is multiplied by 3.0 and 

divided amongst each player equally as the net 

dividend. 

8. Each agent will assess the norm penalty by taking 

the Euclidean distance of its 5 beliefs from the 

values it had at the start of the simulation and 

applying it to the equation shown previously. 

9. Each agent will reduce its net dividend by the 

value of the norm penalty as shown in the equation 

in Figure 15 to produce the adjusted net dividend 

which will in turn be used as the reward signal 

for the agents RL algorithm for trust.  (note: the 

trust RL algorithm is independent of the RL 

algorithm for network emphasis)  

What is surprising is that when the factor F in the 

NormPenalty equation is varied, there is no marked 

difference in the outcome of the simulation from a purely 

statistical point of view.  In other words, the average PC 

play, contributions and dividends do not change.  What is 

seen, however, is an interesting structure of PC play over 

time, shown in Figure 18. 
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Figure 18.  Graphs Showing Increasing Belief Revision Penalty 

What is seen in the above is the higher the factor F 

becomes, the more unstable the Public Commodity game is.  In 

other words, with a small norm penalty the agents will tend 

to find a stable equilibrium and remain there with fairly 

significant stability.  As F is increased, the stability is 

decreased.   

The intriguing thing is that this behavior appears to 

be similar to actual human interaction.  For example, if we 

look at a society there is a sense of a norm although it 

will really change over time it will remain fairly constant 

over small enough time periods.  In this society there will 

be people or factions that challenge the social norm causing 

brief unstable equilibrium away from the norm that seem to 

return to the social norm after some time.  Often this can 

be seen as an individual or coalition breaking from the 

social norm.  The concept of coalitions in economic game 

theory is well understood and is an expected outcome games 

such as this (Von, Neumann, & Morgenstern, 1944).  The level 

at which coalition behavior takes place in societies can be 

a tunable parameter of this model.  It should be pointed out 

however that this version of the trust algorithm utilizes a 

simple reward-penalty structure.  Implementing this model in 

CG, which has its own reward structure built in, makes this 
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feature very difficult to reproduce.  There will be more in 

depth discussion of this in the next chapter. 

C. TUNING THE REINFORCEMENT LEARNING PARAMETERS 

One of the issues in implementing RL algorithms is that 

there are a few parameters that are used to define how the 

algorithm functions.  There was a detailed description of 

these parameters in Chapter II.  To apply a RL algorithm to 

the CG model, there are a few things that must be taken into 

account.  The most important thing is that this model is 

intended to run for relatively small groups of agents up to 

about 300, and meant to run for relatively short periods of 

time depending on the specifics of the scenario.  These 

limitations are due to complexity and the limits of 

computing power available.  There is no perfect theory that 

will identify the best parameter inputs for a given 

scenario.  Additionally and more importantly there is now 

way to map human behavior directly to these input 

parameters.  This is due to the fact that every person and 

every situation is vastly different.  RL is not a perfect 

match for human problem solving and therefore our prime 

motivation in selecting inputs to the RL algorithm is speed 

of learning.  We sought to find inputs that would yield 

global optimums in the minimum amount of time.   

In order to optimize the inputs to the RL algorithm we 

developed a program that would allow a group of 100 agents 

to compete at the tasks identified above in the PC game.  In 

particular, we left the input parameters as individual genes 

in a genetic algorithm.  The population was allowed to play 

the PC game for 2000 rounds including a 300 round 

stabilization period.  During play the agents were only 
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allowed to communicate about every 5 rounds in order to 

approximately mimic the communications that go on in the CG 

model.  Each round the total utility of the agents was 

ranked and the bottom half of all agents lobotomized, in 

that their RL algorithms were stripped away.  New RL 

algorithms for these agents were inserted as a genetic cross 

between two surviving parents selected at random using a 

Boltzmann selection method were the agent with higher 

utility has the better chance of breeding.  In addition to 

this the agents had a 3% chance per gene of random mutation. 

The following is an example of this methodology also 

shown graphically in Figure 19: 

1. Start of the simulation: 30 agents are created 

with random values for their Lambda, Gamma, 

Default Utility and Temperature which are used to 

define the RL algorithm at the core of their trust 

and communications behaviors.   

2. Stabilization: These agents will be allowed to 

randomly communicate for 300 rounds which will 

give the social network enough time to stabilize 

from its initially random values.   

3. PC Game Play: Following the stabilization period 

the agents will continue communicating randomly, 

but will also be forced to play the PC game once 

per round for 1700 additional rounds. 

4. Ranking and Culling: At the end of the PC game 

play, the agents are ranked according to their 

total score (utility) in the PC game.  The bottom 
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50% of these agents are culled as they are poor 

performers and their genes are undesirable. 

5. Breeding: The remaining agents are then selected 2 

at a time for breeding.  The selection is random 

and is weighted based on the agent’s utility score 

from the PC play portion.  One of the culled 

agents is regenerated with genes randomly selected 

from each parent weighted by each parents utility 

score.  For each gene there is also a 3% chance 

that the gene will be from neither parent and will 

take on a new random value.  This process is 

repeated until the agent list is repopulated. 

6. Repeat: Steps 1–5 are considered 1 generation.  

For most processes very few generations are 

required, for this work 100 is used, just to be 

certain all the genes have reached stable values 

or have otherwise been shown to be unstable. 
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Figure 19.  Overview of Using Genetic Algorithms to Breed 
Effective Social Network Agents 

Allowing the agents to evolve for 100 generations we 

have found that some of our learning parameters form a 

pretty tight distribution, while others do not.  Those that 

do not, indicate that they do not have high importance in 

making these agents fast learners.  The results of the 

parameters that were significant are included in Figure 20 

below. 
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Figure 20.  The Genes of the RL Algorithm by Generation 

The first and most obvious result here is that the gene 

for Lambda or the learning rate in the model tends to be 

very high.  This indicates that the agents do not need a 
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very long memory in order to be successful in this model and 

look primarily at the most recent information.  Looking at 

the figures below, it can be seen how the Lambda gene 

evolved (Figure 21) very rapidly to an optimum within only a 

few generations. 

 

 
Figure 21.  Statistics on the Lambda Gene in the  

First Three Generations 
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The other genes in this model all seem to fit only 

loosely into an optimum.  The Gamma gene seemed to show some 

population pressure to stay close to the range of 0.3 to 

0.5.  The other genes did not seem to come stable to any 

particularly tight grouping.   

Assuming the gene pool has roughly stabilized by 50 

generations, the remaining 50 generations were used to 

produce random agents for testing within the CG model.  The 

results of testing are discussed in the next chapter.   
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IV. APPLICATION TO CULTURAL GEOGRAPHY 

Cultural Geography is an extremely complex model and 

there were changes to be made to the trust algorithm in 

order to fit it within the existing CG architecture.  In a 

typical simulation run there simply are not enough 

communications for the agents to have a state space that is 

two dimensional and inclusive of subject matter and sender.  

For this initial implementation, it was necessary to limit 

the state space to include only the sender and be completely 

independent of the subject matter.  In future versions, the 

subject matter will likely be brought back in, in such a way 

that will require the simulation to undergo an initial 

learning period prior to the actual simulation run.  More of 

this will be discussed in the future work section in 

Chapter V.  Additionally, the CG model is a discrete event 

simulation in which there are distinct and separate events 

for sending and for receiving communications.  These events 

occupy different portions of the code and therefore it was 

vastly simpler to develop separate inbound and outbound 

trust models.  In future versions, a method for linking 

these separate algorithms can be implemented. However, for 

this early version, no such link was developed.  Lastly, in 

order to help track trust development during future testing 

it was decided that a binary trust decision would not 

suffice.  In lieu of this, the agents choose to raise or 

lower a trust value each time a communication is sent or 

received.  The trust value, compared to a threshold 

determines whether or not a communiqué is to be trusted. 
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This will also allow future implementations to model the 

concept of trust as a floating value rather than a binary 

decision.     

A.  THE TRUST MODEL WITHIN CULTURAL GEOGRAPHY 

As was discussed previously the process from going from 

the received percepts of the environment to the hashable 

state to be used in the RL algorithm is not able to be 

generalized and must be specifically implemented for each 

simulation this algorithm is used in.  For CG, the agent has 

an internal process that forms the current situation as 

described in Chapter II.  This trust algorithm is attached 

to CG at this point.  In particular, if the current 

situation involves the receipt of a communication, the trust 

algorithm is applied.  In the simplified test program, it 

was possible to use both the sender’s name and the subject 

as state variables; however, due to the complexity of CG, it 

is necessary to only use the subject at this time.  In 

addition to reducing complexity, it is also realistic to 

remove the subject from the state determination because in 

the observations of real human interactions, the subject of 

discussion does not often effect trust.  The person sending 

the information seems to have a much more significant 

impact.   

Within CG, the agents choice of actions are themselves 

based an RL algorithms.  The agents determine its state 

using a cognitive approach described in Chapter II and based 

on that make a choice of possible actions.  If the agent 

chooses to communicate, it is at this point that the 

outgoing trust algorithm is tied in.  The agent has a 

selection of its closest neighbors in the social network.  
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The algorithm will choose to trust the agents to receive the 

communication on an individual basis based on the trust 

level of that agent.  Prior to making the actual trust 

decision, the agent will choose to either raise, lower or 

keep constant the level of trust in each of the potential 

nearest neighbors with whom it may communicate.  These 

decisions are the result of an RL algorithm.    

One of the crucial pieces to developing a successful RL 

based algorithm is definition of a reward structure.  

Concurrently with the development of this trust algorithm 

was the development of a cognitive architecture.  The 

cognitive architecture allows the agent to receive percepts 

from the environment into the agents short term memory which 

contains a tunable limit to the number of percepts that can 

be simultaneously stored in short term memory.  Periodically 

the short term memory is evaluated and a situation is 

cognitively determined that tells the agent essentially what 

is going on in the world.  The agents then use this 

situation to determine motivation.  For example, in CG all 

the agents are commodity seekers, obtaining items such as 

food, water and fuel as they are needed.  If an agent has 

been without water for a while, its basic need for water 

will be at the forefront of his motivations.  The cognitive 

architecture also has a long-term memory that can give the 

agent a sense of how they are prospering.  The CG cognitive 

architecture provides a built-in function for agent 

satisfaction that is easily used as the prime reward signal 

for the trust algorithms as shown in Figure 22 below. 
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Figure 22.  Overview of Outbound Trust Algorithm Within 
Cultural Geography 

B.  ATTEMPTING TO PLAY PUBLIC COMMODITY GAMES IN CULTURAL 
GEOGRAPHY 

In order to develop a simple enough PC scenario within 

CG and remain in the scope of this research project it was 

necessary to patch the PC game into an existing scenario.  

The scenario chosen was a simple model of 30 agents modeled 

after the population of the United States.  These agents 

will communicate for approximately 300 rounds with injects 

from the environment that are information pertinent to their 

national satisfaction. These injects include economic 

factors.  With the generalized nature of the algorithm being 

applied it is felt that the particulars of this model would 
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not affect the outcome of the trust algorithm.  Particularly 

if the national satisfaction was assumed to be equivalent to 

the faith in the public commodity, we can easily play the 

public commodity game within this model.    

C.  DISCUSSION OF EXPERIMENTAL RESULTS   

The PC game within the CG model had similar results to 

early testing in the standalone version.  Figure 23 shows 

the individual agents PC contributions and satisfaction over 

the run of the simulation.   

 

 

Figure 23.  Initial Results of Public Commodity in Cultural 
Geography Showing PC Contributions Over Time by 

Agent and Agent Satisfaction. 

Both contribution and satisfaction are very tightly 

grouped, which is not a feature to be expected from a real 

population of individuals in a similar situation.  To 

understand what is going on here, recall that the 

contribution of the agents were identical to the issue 
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stance of national satisfaction.  What this graph shows is 

that with this scenario and this particular implementation 

of the CG model, all the agents in this scenario have very 

little difference in their beliefs.  This is likely due to 

the fact that the belief structure for this test case was 

very simple.  More significant than this however, is the 

likelihood that the agents can too easily change their 

beliefs.  Looking to the standalone data, it was not until a 

very sharp exponentially driven penalty function was applied 

to the model that realistic trust group formation began to 

occur.  There will be more discussion of this and other 

recommended improvements in the future directions chapter to 

follow. 
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V. FUTURE DIRECTIONS 

In summary, there were very promising results observed 

from the initial testing of the algorithm.  Applying this 

algorithm to the CG model produced less dramatic results, 

however has pointed to some obvious areas for improvement.  

In the following sections there are several recommendations 

for future work with this trust model. 

A.  FUTURE TESTING WITH TRUST GAMES 

The results of testing within Cultural Geography show 

that the agents too readily allow their beliefs to come in 

line with each other and thusly allow their contributions to 

nearly all be the same.  With such behavior, the game is not 

dynamic enough for there to be any trust formation.  

Additionally, the game is being played as if all the agents 

in the society are within one large trust group.  Without 

separate groups competing, there are no really good data 

from which to validate this model of trust within Cultural 

Geography.  This situation is strikingly similar to what was 

first observed in the standalone version.  Essentially in 

that instance all the players converged to the same beliefs 

and the same PC contribution.  When a significant penalty 

was added for changing beliefs, the model became far more 

realistic.  It is recommended that to test this algorithm 

further within CG, a more significant penalty be implemented 

for belief revision.   
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B.  GENETIC ALGORITHMS FOR IN-SITU MODIFCATION OF AGENT 
LEARNING 

It may also be possible to make the learning parameters 

of the agents self adaptive.  If we follow the same basic 

genetic algorithms approach described previously, we might 

find that the agents could be made to alter their own 

learning parameters to adapt to different environments.  The 

fundamental difference would be that instead of 30 

competitively bred agents, there would instead be 30 agents 

that are static that have multiple learning techniques 

applied internally.  For example, each agent would have 7 

different RL algorithms operating in its internals that 

would also give it up to 7 different possible courses of 

action.  The choice of which of these 7 to utilize can also 

be RL driven in a similar situation to a 7-armed bandit 

scenario, in that it is a stateless RL algorithm with a 

static set of possible actions.  This way, when an RL 

algorithm leads to poor performance, another one may be 

selected.  The 7 RL algorithms could periodically be culled 

and bred in order to take advantage of the benefits of 

genetic techniques.     

 C.  SITUATION IDENTIFICATION AND LAYERED APPROACH TO TRUST 

Due to the scarcity of communications in the average CG 

run, there is not a lot of time to allow RL algorithms to 

work and develop trust.  This is the primary reason why the 

state input to the RL algorithm for CG had to be limited to 

just the identity of the sender.  If the state were more 

complicated, learning behavior simply would not have enough 

time to find any sort of optimums in the state-action space.  

However, if an adequate method could be found to prime the 
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learning engines of these agents that would not be 

computationally untenable, the state space could be much 

more complicated and make the model much more realistic.   

Obviously the first item would be to bring back the 

subject of communications back into the trust decision.  For 

future work it would be useful to determine if the trust 

decision should be a single decision based on the sender-

subject as a single entity, or should it be two sequential 

decisions?  As a sequential decision is would be that the 

agent would first ask if they trust the sender and then if 

the sender is trusted, should they trust the sender to 

discuss the particular subject matter? 

The next level in adding complexity to the state space 

would be to allow all the perceptual information that a 

person would normally use to develop a notion of trust in 

others.  The need for this is clear when we have an 

established social network of agents and then we add a 

newcomer agent.  If that newcomer or stranger enters into 

conversation with an established agent, the initial trust 

decision can become an important part of social phenomenon.  

Therefore, it is not enough to just allow the RL algorithm 

to develop the sense of trust of this agent by its name.  

Rather, the agent’s physical (i.e., demographic) 

characteristics will play a huge role in the initial trust 

determination.   

The state space would be represented by a series of 

percepts of the received communication.  Those percepts 

could include the identity of the sender, the subject 

matter, and other characteristics including race, demeanor, 

appearance, age, apparent social status, or many more 
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possibilities.  The obvious problem is that if the state 

space is too complex, the probability that any two states 

the agents find themselves are the same would be small.  

Therefore, if we employ a standard single RL algorithm, it 

could take millions of interactions before the RL algorithm 

has located any optimums within which to operate.   

One possible way around the problem with overly complex 

state spaces would be to build a layered dynamic algorithm 

where the trust decision is a series of decisions.  The state 

space for each decision is based on a single characteristic 

just like proposed above where first we trust the sender and 

then the subject matter.  There is an added problem to this 

approach in that it is unrealistic to assume that this 

complex layered trust decision will be the same from the time 

an agent is first met to when they are an old friend and have 

been for 20 years.  These decisions do not have to be 

sequential.  In fact, they could be a combination of serial 

and parallel weighted decisions as shown in Figure 24. 

 

Figure 24.  Layered Approach to Trust Decisions 
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As shown in Figure 24, the decision to trust could be 

based on a group of series and parallel decisions.  The 

pathways and weights of these decisions could modified based 

on utility gained from the agent, or could be based on how 

long and how often the agent is communicated with.  The 

updating of the pathways and weights could also be part of 

an RL algorithm in itself.   

As part of the layered approach to the trust decision 

we could also include some internal percepts.  This would 

allow the agents “emotional” state to possible effect its 

trust decision.  As an example, a real person who is feeling 

extremely happy and fortunate is likely to be far more 

trusting of people than someone who is not. 
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